Data-Based Decisions under Imprecise Probability and Least Favorable Models

Robert Hable *
Department of Statistics
LMU Munich

^{*} supported by Cusanuswerk

Robert Hable

Department of Statistics, LMU Munich (Germany)

- ► Education: Mathematics (in Bayreuth, Gemany)
- Diploma Thesis in Robust Asymptotic Statistics (Helmut Rieder)
- Now: Ph.D. Student under the Guidance of Thomas Augustin → Topic: "Data-Based Decisions under Complex Uncertainty"
- Research Interests:
 - Decision Theory under Imprecise Probabilities
 - Mathematical Foundations of Imprecise Probabilities
 - Robust Statistics

Usual Decision Theory

- ▶ States of nature: $\Theta = \{\theta_1, \dots, \theta_n\}$
- ▶ Decisions: $t \in \mathbb{D}$
- ▶ Bounded loss functions: W_{θ} : $\mathbb{D} \to \mathbb{R}$, $t \mapsto W_{\theta}(t)$

	θ_1		θ_i		θ_n
t_1	$W_{\theta_1}(t_1)$		• • •		$W_{\theta_n}(t_1)$
:		٠			
t_k	÷		$W_{\theta_i}(t_k)$		
:				٠	
t _m	$W_{\theta_1}(t_m)$				$W_{\theta_n}(t_m)$

Usual Decision Theory

- ▶ States of nature: $\Theta = \{\theta_1, \dots, \theta_n\}$
- ▶ Decisions: $t \in \mathbb{D}$
- ▶ Bounded loss functions: W_{θ} : $\mathbb{D} \to \mathbb{R}$, $t \mapsto W_{\theta}(t)$
- ▶ Prior distribution over Θ : $\pi = (\pi_{\theta_1}, \dots, \pi_{\theta_n})$
- ▶ Expected loss for decision $t \in \mathbb{D}$: $\sum_{\theta \in \Theta} \pi_{\theta} W_{\theta}(t)$

Often: Decision making on base of observations $y \in \mathcal{Y}$

- ▶ Decision functions: δ : $\mathcal{Y} \to \mathbb{D}$, $y \mapsto \delta(y)$
- ▶ Distribution of the observation y: q_{θ} where $\theta \in \Theta$
- **Expected loss for decision function** $\delta: \mathcal{Y} \to \mathbb{D}$ is

$$\sum_{\theta \in \Theta} \pi_{\theta} \int W_{\theta}(\delta(y)) \, q_{\theta}(dy)$$

(□) (□) (□) (∃) (∃) (∃) (○)

LMU Munich

Decision Theory under Imprecise Probability

Instead of a precise prior distribution π : Imprecise prior distribution (coherent upper prevision):

$$\overline{\Pi}[f] = \sup_{\pi \in \mathcal{P}} \pi[f] \,, \qquad f: \Theta \to \mathbb{R}$$

 \mathcal{P} : a set of precise prior distributions (credal set)

▶ Instead of a precise distribution q_{θ} of the observation y: Imprecise distribution of the observation y (coherent upper prevision):

$$\overline{Q}_{ heta}[g] = \sup_{q_{ heta} \in \mathcal{M}_{ heta}} q_{ heta}[g] \qquad orall \, heta \in \Theta \,, \quad g: \mathcal{Y} o \mathbb{R}$$

 \mathcal{M}_{θ} : a set of precise distributions of the observation y (credal set)

Robert Hable

4 U P 4 UP P 4 E P

LMU Munich

Decision Theory under Imprecise Probability

Imprecise prior distribution (coherent upper prevision):

$$\overline{\Pi}[f] = \sup_{\pi \in \mathcal{P}} \pi[f]$$

Imprecise distribution of the observation y (coherent upper prevision):

$$\overline{Q}_{\theta}[g] = \sup_{q_{\theta} \in \mathcal{M}_{\theta}} q_{\theta}[g] \qquad \forall \, \theta \in \Theta$$

Upper expected loss for decision function $\delta: \mathcal{Y} \to \mathbb{D}$ is

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) \, q_{\theta}(dy)$$

4□ → 4周 → 4 = → 4 = → 9 0 0

Task

Find a decision function $\tilde{\delta}$ which minimizes the upper expected loss

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) \, q_{\theta}(dy) \, = \, \min_{\delta}!$$

Optimality criterion:

Γ-minimax criterion: worst-case consideration

Problem:

often, direct solution computationally intractable

(ロ) (御) (意) (意) (達) の(()

LMU Munich

Robert Hable

Common Idea

Find another optimization problem which has the following properties:

- Solving this new optimization problem leads to a solution of the original problem.
- ➤ The new optimization problem should be computationally tractable!

→ Least Favorable Models

Least favorable model

- $\triangleright \mathcal{M}_{\theta}$: credal set for the distribution of the observation y
- $ightharpoonup \mathcal{P}$: credal set for the prior distribution
- ▶ Find some $\tilde{q}_{\theta} \in \mathcal{M}_{\theta}$ for every $\theta \in \Theta$ so that

$$egin{aligned} \inf_{\delta} \sum_{ heta \in \Theta} \pi_{ heta} \sup_{q_{ heta} \in \mathcal{M}_{ heta}} \int W_{ heta}(\delta(y)) \, q_{ heta}(dy) &= \ &= \inf_{\delta} \sum_{ heta \in \Theta} \pi_{ heta} \int W_{ heta}(\delta(y)) \, ilde{q}_{ heta}(dy) & orall \, \pi \in \mathcal{P} \end{aligned}$$

 $(\tilde{q}_{\theta})_{\theta \in \Theta} \in (\mathcal{M}_{\theta})_{\theta \in \Theta}$ is called least favorable model. (\longrightarrow Huber-Strassen (1973))

Then, we have:

The new optimization problem

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \qquad \int W_{\theta}(\delta(y)) \, \tilde{q}_{\theta}(dy) \; = \; \min_{\delta}!$$

is computationally easier than the original optimization problem

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) \, q_{\theta}(dy) \; = \; \min_{\delta}!$$

... and we have:

There is a solution $\tilde{\delta}$ of the new optimization problem

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \qquad \int W_{\theta}(\delta(y)) \, \tilde{q}_{\theta}(dy) \; = \; \min_{\delta}!$$

which also solves the original optimisation problem is

$$\sup_{\pi \in \mathcal{P}} \sum_{\theta \in \Theta} \pi_{\theta} \sup_{q_{\theta} \in \mathcal{M}_{\theta}} \int W_{\theta}(\delta(y)) \, q_{\theta}(dy) \; = \; \min_{\delta}!$$

However

A least favorable model $(\tilde{q}_{\theta})_{\theta \in \Theta} \in (\mathcal{M}_{\theta})_{\theta \in \Theta}$ does not always exist!

That is: The presented procedure does not always work!

Question: When does it work?

Main Result

The Main Theorem provides:

A necessary and sufficient condition for the existence of a least favorable model $(\tilde{q}_{\theta})_{\theta \in \Theta} \in (\mathcal{M}_{\theta})_{\theta \in \Theta}$

Remarks:

- exact condition is rather involved; uses some of Le Cam's concepts such as
 - equivalence of models
 - conical measures (or standard measures)
- ▶ generalizes Buja (1984) and Huber-Strassen (1973)

4□ > 4□ > 4□ > 4□ > 4□ > 900

Comparison with Buja 1984 – Some Technicalities

Buja 1984

- lacktriangle Credal sets \mathcal{M}_{θ} only contain σ -additive probability measures
- ▶ Condition: Compactness of credal sets \mathcal{M}_{θ} This is restrictive in Buja's setup! (cf. Hable (2007B, *E-print*))

Now

- ▶ Credal sets \mathcal{M}_{θ} may contain finitely-additive probability measures (which are not σ -additive).
- ▶ Compactness of credal sets \mathcal{M}_{θ} comes for free in Walley's setup.

A first conclusion:

- $ightharpoonup \sigma$ -additivity is not necessary here.
- ightharpoonup Getting around σ -additivity is possible by Le Cam's setup

◆□▶ ◆圖▶ ◆필▶ ◆필▶ · 필 · ∽

Le Cam's setup

- ► Le Cam: strictly functional analytic approach to probability theory (cf. e.g. Hable (2007C, *E-print*))
- Rather involved and abstract (uses advanced functional analytic methods)
- "Traditional concepts" (σ -additivity, Markov-kernels,...): appropriate for small models (dominated by a σ -finite measure)

Le Cam's concepts: also appropriate for large models

A second conclusion:

Imprecise probabilities lead to large models

- Le Cam's concepts are appropriate for the theory of imprecise probabilities.
- → Maybe, they could/should be used further on.

LMU Munich

References

- Buja, A. (1984): Simultaneously Least Favorable Experiments, Part I: Upper Standard Functionals and Sufficiency. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 65, 367–384.
- Hable, R. (2007A): Data-Based Decisions under Imprecise Probability and Least Favorable Models. In: De Cooman, G., Vejnarová, J., Zaffalon, M. (eds.). Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications, 203–212.
- ► Hable, R. (2007B): A Note on an Error in Buja (1984). E-print.
 - www.statistik.lmu.de/~hable/publications.html
- ► Hable, R. (2007C): Decision Theory: Some of Le Cam's Concepts. *E-print*.

www.statistik.lmu.de/~hable/publications.html