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Usual Decision Theory
» States of nature: © = {61,...,0,}

» Decisions: t € D
» Bounded loss functions: Wy : D — R, t+— Wy(t)

H 01 . 0; . 6,
t1 || Wa,(t1) W, (t1)
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Usual Decision Theory

» States of nature: © = {61,...,0,}

» Decisions: t € D

» Bounded loss functions: Wy : D — R, t+— Wy(t)
» Prior distribution over ©: 7w = (mg,,...,ms,)

> Expected loss for decision t € D: ", o mg Wp(t)

Often: Decision making on base of observations y €

» Decision functions: § : YV — D, y — §(y)
» Distribution of the observation y: gy where § € ©
» Expected loss for decision function §: JV — D is

ZW@/ Wo(3(y)) qo(dy)

0cO
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Decision Theory under Imprecise Probability

» Instead of a precise prior distribution 7:
Imprecise prior distribution (coherent upper prevision):

M[f] = sup 7[f], f:©@—=R
TEP

P: a set of precise prior distributions (credal set)

» Instead of a precise distribution gg of the observation y:
Imprecise distribution of the observation y (coherent upper
prevision):

Qolg]l = sup qolg] V€O, g:Y—R

qeEMg

My: a set of precise distributions of the observation y
(credal set)
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Decision Theory under Imprecise Probability

» Imprecise prior distribution (coherent upper prevision):
M[f] = sup [f]
TeP

» Imprecise distribution of the observation y (coherent upper
prevision):

Qolg]l = sup qulg] VOe©

qeEMp

Upper expected loss for decision function § : ) — D is

sup >~ 7 _sup [ Wa5(y)) ()
7'1'673066 qGEMG
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Task

Find a decision function & which minimizes the upper expected loss

sup Tg Sup /Wg )) go(dy) = min!
WEPGE@ quMH J

Optimality criterion:

-minimax criterion: worst-case consideration

Problem:

often, direct solution computationally intractable
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Common ldea

Find another optimization problem which has the following
properties:

» Solving this new optimization problem leads to a solution of
the original problem.

» The new optimization problem should be computationally
tractable!

— Least Favorable Models
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Least favorable model

» My : credal set for the distribution of the observation y

» P : credal set for the prior distribution

» Find some gy € My for every 6 € © so that

inf 7re sup /We ¥)) gs(dy) =
J qeEMy

|nf Z 71'9/ Wy (4(y)) Ge(dy) VreP
6cO

(("79)066 € (M9)eee is called least favorable model.

(— Huber-Strassen (1973))

Robert Hable LMU Munich
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Then, we have:

The new optimization problem

::ggaﬂo /Wg(é(y))a(?(d}/) = méin!

is computationally easier than the original optimization problem

supZm) sup /Wg(é(y))qg(dy) = min!
T€P ycg  EMo b
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. and we have:

There is a solution & of the new optimization problem

::g%ﬂo /Wg((s(y))a(?(d}/) = méin!

which also solves the original optimisation problem is

supZm) sup /Wg(é(y))qg(dy) = min!
T€P ycg  EMo b
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However

A least favorable model (579)96@ € (M@)eee does not always
exist!

That is: The presented procedure does not always work!

Question: When does it work?
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Main Result

The Main Theorem provides:

A necessary and sufficient condition for the existence of a least

favorable model (o) € (My)

0cO 0cO

Remarks:

» exact condition is rather involved;
uses some of Le Cam'’s concepts such as

» equivalence of models
» conical measures (or standard measures)

» generalizes Buja (1984) and Huber-Strassen (1973)
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Comparison with Buja 1984 — Some Technicalities

Buja 1984
» Credal sets My only contain o-additive probability measures

» Condition: Compactness of credal sets My
This is restrictive in Buja's setup! (cf. Hable (2007B, E-print))

Now

» Credal sets My may contain finitely-additive probability
measures (which are not o-additive).

» Compactness of credal sets My comes for free in Walley's
setup.
A first conclusion:
» o-additivity is not necessary here.

» Getting around o-additivity is possible by Le Cam’s setup
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Le Cam’s setup

» Le Cam: strictly functional analytic approach to probability
theory (cf. e.g. Hable (2007C, E-print))
» Rather involved and abstract (uses advanced functional
analytic methods)
» “Traditional concepts” (o-additivity, Markov-kernels,. .. ):
appropriate for small models (dominated by a o-finite

measure)
Le Cam’s concepts: also appropriate for large models

A second conclusion:
Imprecise probabilities lead to large models
—— Le Cam’s concepts are appropriate for the theory of
imprecise probabilities.
— Maybe, they could/should be used further on.
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