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Usual Decision Theory

I States of nature: Θ = {θ1, . . . , θn}
I Decisions: t ∈ D
I Bounded loss functions: Wθ : D → R , t 7→ Wθ(t)

θ1 · · · θi · · · θn

t1 Wθ1(t1) · · · Wθn(t1)
...

. . .

tk
... Wθi

(tk)
...

. . .

tm Wθ1(tm) · · · Wθn(tm)
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Usual Decision Theory

I States of nature: Θ = {θ1, . . . , θn}
I Decisions: t ∈ D
I Bounded loss functions: Wθ : D → R , t 7→ Wθ(t)

I Prior distribution over Θ : π = (πθ1 , . . . , πθn)

I Expected loss for decision t ∈ D :
∑

θ∈Θ πθWθ(t)

Often: Decision making on base of observations y ∈ Y
I Decision functions: δ : Y → D , y 7→ δ(y)

I Distribution of the observation y : qθ where θ ∈ Θ

I Expected loss for decision function δ : Y → D is∑
θ∈Θ

πθ

∫
Wθ(δ(y)) qθ(dy)
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Decision Theory under Imprecise Probability

I Instead of a precise prior distribution π:
Imprecise prior distribution (coherent upper prevision):

Π[f ] = sup
π∈P

π[f ] , f : Θ → R

P: a set of precise prior distributions (credal set)

I Instead of a precise distribution qθ of the observation y:
Imprecise distribution of the observation y (coherent upper
prevision):

Qθ[g ] = sup
qθ∈Mθ

qθ[g ] ∀ θ ∈ Θ , g : Y → R

Mθ: a set of precise distributions of the observation y
(credal set)
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Decision Theory under Imprecise Probability

I Imprecise prior distribution (coherent upper prevision):

Π[f ] = sup
π∈P

π[f ]

I Imprecise distribution of the observation y (coherent upper
prevision):

Qθ[g ] = sup
qθ∈Mθ

qθ[g ] ∀ θ ∈ Θ

Upper expected loss for decision function δ : Y → D is

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) qθ(dy)
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Task

Find a decision function δ̃ which minimizes the upper expected loss

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) qθ(dy) = min

δ
!

Optimality criterion:

Γ-minimax criterion: worst-case consideration

Problem:

often, direct solution computationally intractable
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Common Idea

Find another optimization problem which has the following
properties:

I Solving this new optimization problem leads to a solution of
the original problem.

I The new optimization problem should be computationally
tractable!

−→ Least Favorable Models
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Least favorable model

I Mθ : credal set for the distribution of the observation y

I P : credal set for the prior distribution

I Find some q̃θ ∈Mθ for every θ ∈ Θ so that

inf
δ

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) qθ(dy) =

= inf
δ

∑
θ∈Θ

πθ

∫
Wθ(δ(y)) q̃θ(dy) ∀π ∈ P

(
q̃θ

)
θ∈Θ

∈
(
Mθ

)
θ∈Θ

is called least favorable model.

(−→ Huber-Strassen (1973))
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Then, we have:

The new optimization problem

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) q̃θ(dy) = min

δ
!

is computationally easier than the original optimization problem

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) qθ(dy) = min

δ
!
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. . . and we have:

There is a solution δ̃ of the new optimization problem

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) q̃θ(dy) = min

δ
!

which also solves the original optimisation problem is

sup
π∈P

∑
θ∈Θ

πθ sup
qθ∈Mθ

∫
Wθ(δ(y)) qθ(dy) = min

δ
!
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However

A least favorable model
(
q̃θ

)
θ∈Θ

∈
(
Mθ

)
θ∈Θ

does not always
exist!

That is: The presented procedure does not always work!

Question: When does it work?
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Main Result

The Main Theorem provides:

A necessary and sufficient condition for the existence of a least
favorable model

(
q̃θ

)
θ∈Θ

∈
(
Mθ

)
θ∈Θ

Remarks:

I exact condition is rather involved;
uses some of Le Cam’s concepts such as

I equivalence of models
I conical measures (or standard measures)

I generalizes Buja (1984) and Huber-Strassen (1973)
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Comparison with Buja 1984 – Some Technicalities

Buja 1984

I Credal sets Mθ only contain σ-additive probability measures

I Condition: Compactness of credal sets Mθ

This is restrictive in Buja’s setup! (cf. Hable (2007B, E-print))

Now

I Credal sets Mθ may contain finitely-additive probability
measures (which are not σ-additive).

I Compactness of credal sets Mθ comes for free in Walley’s
setup.

A first conclusion:

I σ-additivity is not necessary here.

I Getting around σ-additivity is possible by Le Cam’s setup
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Le Cam’s setup

I Le Cam: strictly functional analytic approach to probability
theory (cf. e.g. Hable (2007C, E-print))

I Rather involved and abstract (uses advanced functional
analytic methods)

I “Traditional concepts” (σ-additivity, Markov-kernels,. . . ):
appropriate for small models (dominated by a σ-finite
measure)

Le Cam’s concepts: also appropriate for large models

A second conclusion:

Imprecise probabilities lead to large models
−→ Le Cam’s concepts are appropriate for the theory of

imprecise probabilities.
−→ Maybe, they could/should be used further on.
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